Thursday, September 1, 2011

Virtual Column in Oracle 11g


Oracle 11g has introduced a new feature that allows us to create a "virtual column", an empty column that contains a function upon other table columns (the function itself is stored in the data dictionary). Oracle 11g enables us to store expressions directly in the base tables themselves as virtual columns.Virtual columns are more flexible than any of their prior alternatives.

The syntax for defining a virtual column is listed below.
column_name [datatype] [GENERATED ALWAYS] AS (expression) [VIRTUAL]

Creating a virtual column :     Here we will create a table witha single column as follows .

SQL> create table vir_tab 
     ( id number , 
       sal number , 
       bonus number generated always as (id + sal) virtual 
     );
 Table created.

We can see that the virtual column is generated from a simple expression involving the other columns in our table. Note that the VIRTUAL keyword is optional and is included for what Oracle calls "syntactic clarity"

Virtual column values are not stored on disk. They are generated at runtime using their associated expression (in our example, N1 + N2). This has some implications for the way we insert data into tables with virtual columns, as we can see below.

SQL> insert into vir_tab values (100,11000,11100);
INSERT INTO t VALUES (10, 20, 30)
            *
ERROR at line 1:
ORA-54013: INSERT operation disallowed on virtual columns

Hence ,we cannot explicitily add data to virtual columns, so we will attempt an insert into the physical columns only as follows

SQL> insert into vir_tab values(100,11000);
INSERT INTO t VALUES (10, 20)
            *
ERROR at line 1:
ORA-00947: not enough values

Here we see that we cannot insert columns,they are still considered part of the table's column list.This means that we must explicitily reference the physical columns in our insert statements, as follows .

SQL> insert into vir_tab (id,sal) values (100,11000);
1 row created.

Now we have successfully inserted the data and can query the table.

SQL> select * from vir_tab;

  ID        SAL      BONUS
---- ---------- ----------
 100      11000      11100


Indexes and Constraints on virtual columns :

SQL> create index sal_idx on vir_tab(sal);

For Constraint :

SQL> alter table vir_tab add constraint vir_id_pk primary key(id);

Benefits of Virtual Columns :

  • Automatic re-computation of derived columns for ad-hoc query tools
  • Reduction in redundant disk space for columns that must be derived from other columns (e.g. a MONTH column that is derived from another DATE column).
  • Easier for interval partitioning


There are few restrictions on the virtual columns.
1.   We cannot write/insert the data into virtual columns.
2.   There is no support for index_organized, external, object, cluster, temporary tables.
3.   There is no support for Oracle-supplied datatypes, user-defined datatypes, LOBs, or LONG RAWs.
4.   We can partition the table based on virtual column .We can use below query to define virtual columns     defined in the users schema.

SQL> SELECT TABLE_NAME, COLUMN_NAME, DATA_TYPE, HIDDEN_COLUMN
FROM USER_TAB_COLS   WHERE VIRTUAL_COLUMN = ‘YES’;
5. we can not create virtual columns on Temporary tables, object types, clusters, External tables and Index Organized Tables

Reference ::  http://www.oracle-developer.net/display.php?id=510


Enjoy     :-) 

Database Resident Connection Pooling in Oracle 11g


In traditional client/server architectures, there is a one-to-one correspondence between a user session and a database connection. In Web-based systems however, this may not be the case.
Web based systems are “stateless” in nature--when we visit a page, a database connection is established with the database and when the page loading is over, the connection to the database is severed. Later, when the user clicks again on the page, a new connection is established that is severed after the desired effect. This process makes it unnecessary to maintain a large number of simultaneous connections.

According to the Tom Kytes : 

Connection pooling is generally the practice of a middle tier (application server) getting N connections to a database.These connections are stored in a pool in the middle tier, an "array" if we will.  Each connection is set to "not in use" . When a user submits a web page to the application server, it runs a piece of code, our code says "i need to get to the database", instead of connecting right there and then (that takes time), it just goes to this pool and says "give me a connection please". the connect pool software marks the connection as "in use" and gives it to us.  We generate the page, format the html whatever -- and then return the connection to the pool where someone else can use it.In this fashion, using connections to the database, we can avoid the connect/disconnect overhead.

Establishing connections is expensive in overhead, so connection pooling is an important requirement in the apps. when a page needs database access, it allocates one of the already established connections out of the pool. After the work is done, the Web session returns the connection back to the pool.

The problem with traditional client-side or middle-tier connection pooling, however, is:

• Each pool is confined to a single middle-tier node.

• A proliferation of pools results in excessive number of pre-allocated database servers and excessive database server memory consumption.

• Workload is distributed unequally across pools.

To obviate these problems, Oracle Database 11g provides a server-side pool called Database Resident Connection Pool (DRCP). DRCP is available to all database clients that use the OCI driver including C, C++, and PHP.

Oracle Database 11g comes preinstalled with a default connection pool but it is shut down. To start it, use:
SQL> execute dbms_connection_pool.start_pool;
Now to connect to the pooled connections instead of a regular session, all we have to do is add a line (SERVER=POOLED) to the TNS entry as shown below :
e.g;

PRONE3_POOL =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = xxxx)(PORT = 1521))
(CONNECT_DATA =
(SERVER = POOLED)
(SID = PRONE3)
)
)

The clients can connect to the connection pool, using the connect string PRONE3_POOL. That’s it. Now our apps will connect to the pool instead of the server. If we use the standard connect string without the TNSNAMES.ORA file, we can use the POOLED clause. For instance, in PHP, you will connect as:

$c = oci_pconnect(‘myuser’, ‘mypassword’,’xxxx/PRONE3:POOLED’);
or
$c = oci_pconnect(‘myuser’, ‘mypassword’,’PRONE3_POOLED’);

In the above description we started the default pool that comes with Oracle with the default options. we can use the procedure CONFIGURE_POOL in the supplied package DBMS_CONNECTION_POOL :

For More detail visit below links :
http://download.oracle.com/docs/cd/B14117_01/win.101/b10117/features001.htm
http://download.oracle.com/docs/cd/B10501_01/java.920/a96654/connpoca.htm


Enjoy     :-)


Wednesday, August 31, 2011

Oracle 11g - Rman Backup Committed Undo ? Why?


We already know what undo data is used for. When a transaction changes a block, the past image of the block is kept it the undo segments. The data is kept there even if the transaction is committed because some long running  query that started before the block is changed can ask for the block that was changed and committed. This query should get the past image of the block—the pre-commit image, not the current one. Therefore undo data is kept undo segments even after the commit. The data is flushed out of the undo segment in course of time, to make room for the newly inserted undo data.

When the RMAN backup runs, it backs up all the data from the undo tablespace. But during recovery, the undo data related to committed transactions are no longer needed, since they are already in the redo log streams, or even in the datafiles (provided the dirty blocks have been cleaned out from buffer and written to the disk) and can be recovered from there. So, why bother backing up the committed undo data?

In Oracle Database 11g, RMAN does the smart thing: it bypasses backing up the committed undo data that is not required in recovery. The uncommitted undo data that is important for recovery is backed up as usual. This reduces the size and time of the backup (and the recovery as well). In many databases, especially OLTP ones where the transaction are committed more frequently and the undo data stays longer in the undo  segments, most of the undo data is actually committed. Thus RMAN has to backup only a few blocks from the undo tablespaces.

The best part is that we  needn’t do anything to achieve this optimization; Oracle does it by itself.


Enjoy    :-)